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a b s t r a c t

The prognosis for oesophageal cancer is poor. Attempts have been made for the identification of biomark-
ers for early diagnosis. Metabolomic panel has been evaluated as potential candidate biomarkers. With
gas chromatography/mass spectrometry (GC/MS) as a sensitive modality for metabolomics, various tissue
metabolites can be detected and identified. We hypothesized that tissue metabolomic biomarkers may be
identifiable and diagnostically useful for oesophageal cancer. We present a metabolomic method of chem-
ical derivatization followed by GC/MS to analyze the metabolic difference in biopsied specimens between
oesophageal cancer and corresponding normal mucosae obtained from 20 oesophageal cancer patients.
The GC/MS data was analyzed using a two sample t-test to explore the potential metabolic biomarkers for
as chromatography/mass spectrometry oesophageal cancer. A diagnostic model was constructed to discriminate normal from malignant sam-
ples, using principal component analysis (PCA) and receiver–operating characteristic (ROC) curves. t-Test
showed a total of 20 marker metabolites detected were found to be different with statistical significance
(P < 0.05). The multivariate logistic analysis yielded a complete distinction between the two groups. The
diagnostic model could discriminate tumors from normal mucosae with an area under the curve (AUC)

ugge
value of 1. Our findings s
for oesophageal cancer.

. Introduction

Cancer of the esophagus is the eighth most common cancer in
he world, and survival of the patients is universally poor [1]. There
re two major histologic types of oesophageal cancer, esophageal
quamous cell carcinoma (ESCC) and adenocarcinoma. Their epi-
emiological features differ considerably. In China and other East
sia countries, more than 90% of cases are ESCC, while adenocarci-
oma is more common in the United States and European countries
2,3]. The 5-year overall survival rates remain low and we can-
ot reliably predict the outcome before treatment [4]. To improve
he survival, various approaches have been taken. Screening and
urveillance in patients at risk have been advocated.
The current diagnostic, screening, and surveillance methods for
esophageal cancer, such as upper gastrointestinal (GI) endoscopy,
arium oesophagram, non-endoscopy-based balloon cytology, and
erology markers (such as CYFRA 21-1) [5], have certain limita-

∗ Corresponding authors. Tel.: +86 21 64041990; fax: +86 21 65641740.
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st that this assay may potentially provide a new metabolomic biomarker
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tions in their own ways. For example, CYFRA 21-1 is not useful
as a screening or surveillance test for its low specificity and sen-
sitivity, although it is easy to perform. Endoscopic screening and
surveillance remain to be most commonly used, which rely on tak-
ing adequate biopsies of the oesophageal mucosa. The accuracy in
tissue biopsy in the detection of cancer in those endoscopically
abnormal mucosa have ranged from 25 to 60% [6]. In an effort to fill
the knowledge gap, metabolomic profiling of tumors may provide a
rapid and alternative means of exploring the potential biomarkers.

Metabolomics, defined as quantitative measurement of low-
molecular-weight metabolites in an organism at a specified time
under specific environmental conditions [7], has been shown to be
an effective tool for disease diagnosis [8–10], biomarker screen-
ing [11–14], and characterization of biological pathways [15].
Metabolomics has become a powerful platform for studies asso-
ciated with the biological metabolisms in a large of research
area [16,17]. However, metabolomics has not been systemat-

ically evaluated in oesophageal cancer. We hypothesized that
tissue metabolomic biomarkers may be identifiable and diagnos-
tically useful for oesophageal cancer. The aim of the study was
to profile biopsy specimens from oesophageal cancer and their
corresponding normal mucosae in the same patients using gas

http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:doctorwangqun@yahoo.com.cn
mailto:shen.xizhong@zs-hospital.sh.cn
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hromatography mass spectrometry (GC/MS) metabolomics fol-
owing chemical derivatization.

. Experimental

.1. Materials and chemicals

Ribitol as an internal standard was purchased from Shanghai
ntechem Tech. Co. Ltd. (Shanghai, China). Methanol (pesticide
esidue grade), Bis-(trimethylsilyl)–trifluoroacetamide (BSTFA)
lus 1% trimethylchlorosilane (TMCS) and amino acid standard
olution were purchased from Sigma–Aldrich (St Louis, MO, USA).
ll other chemicals and reagents were purchased from Ampu Com-
any (Shanghai, China). Distilled water was produced by the Milli-Q
eagentWater System (Millipore, MA, USA).

.2. Patient recruitment and sample collection

This prospective study was approved by the Ethics Commit-
ee of Zhongshan Hospital. Informed consent was obtained from
ll participants. Matched tumor and normal mucosae from the
ame patients with oesophageal cancer (n = 20) were obtained
esophagectomy surgery, consisting of 18 ESCC and 2 adenocarci-
oma. The diagnosis was confirmed by histopathologic evaluation.
one of the patients received neoadjuvant chemotherapy or radi-
tion therapy prior to oesophagectomy. Fresh tumor tissue and
orresponding normal esophageal mucosa were snap-frozen in liq-
id nitrogen during oesophagectomy, then stored at −80 ◦C until
rocessing. Tumor specimens were carefully microdissected to
nsure that at least 90% of the analyzed tissue containing cancer
ells. Corresponding normal mucosae were taken at least 5–10 cm
way from the edges of a tumor. The tumor stage, histology dif-
erentiation, and resection margin were determined by routine
istopathological examination of H & E stained specimens by a
linded pathologist.

.3. Specimen processing

For GC/MS analysis, 20 mg of tissue sample was transferred to a
5-mL glass centrifuge tube. One milliliter of a monophasic mixture
f chloroform–methanol–water (2:5:2, v/v/v) and 100 �L ribitol
0.1 mmol L−1) as an internal standard were added to each sam-
le and the mixture was ultrasonicated at ambient temperature
24–28 ◦C) for 100 min and then vortex-mixed for another 2 min.
he samples were subsequently centrifuged at 18,000 × g for 3 min
nd 0.8 mL of the supernatant was collected separately from each
ample into a 15 mL test tube. The collected supernatant was con-
entrated to complete dryness in a Turbovap nitrogen evaporator
t 50 ◦C for 30 min. A total of 100 �L of toluene, kept anhydrous
ith sodium sulfate, was added to each of the dried tissue extracts,

ortex-mixed for 1 min and again evaporated to complete dryness
n a Turbovap nitrogen evaporator in order to eliminate any trace of

ater which may interfere with GC/MS analysis. The dried samples
ere then derivatized to increase the volatility of polar metabo-

ites by adding 100 �L of bis-(trimethylsilyl)–trifluoroacetamide
BSTFA) plus 1% trimethylchlorosilane (TMCS) to each sample. The
amples were then vortex-mixed for 1 min and incubated at 70 ◦C
or 30 min. After incubation, samples were again vortex-mixed for
min and then transferred to vials for GC/MS analysis [18–20].

.4. GC/MS analysis
A 1 �L aliquot of derivatized sample was injected splitless into
n Agilent 6980 GC system equipped with a 30.0 m × 0.25 mm
.d. fused-silica capillary column with 0.25-�m HP-5MS stationary
hase (Agilent, Shanghai, China). The injector temperature was set
877 (2009) 3111–3117

at 250 ◦C. Helium was used as carrier gas at a constant flow rate of
1 mL min−1 through the column [11,21]. The column temperature
was initially kept at 60 ◦C for 3 min and then increased to 140 ◦C
at 7 ◦C min−1, where it was held for 4 min and further increased
at 5 ◦C min−1 to 300 ◦C where it remained for 1 min. The column
effluent was introduced into the ion source of an Agilent 5973
mass selective detector (Agilent Technologies). The MS quadrupole
temperature was set at 150 ◦C and the ion source temperature at
230 ◦C. Masses were acquired from m/z 50–800. The mass accuracy
of the instrument was 0.1 atomic mass unit (amu). The accelera-
tion voltage was turned on after a solvent delay of 180 s. GC/MSD
ChemStation Software (Agilent, Shanghai, China) was used for auto-
acquisition of GC total ion chromatograms (TICs) and fragmentation
patterns. Each compound had a unique fragmentation pattern com-
posed of a series of split molecular ions, the mass charge ratios
and the abundance of which could be compared with a standard
mass chromatogram in the NIST (National Institute of Standards
and Technology) mass spectra library by the ChemStation Software.
For each peak, the software will generate a list of similarities com-
paring with every substance within the NIST library. Peaks with
similarity index more than 70% were assigned compound names,
while those having less than 70% similarity were listed as unknown
metabolites [18].

The chromatograms were subjected to noise reduction and
peaks with intensity higher than threefold of the ratio of signal-
to-noise (S/N) were recorded prior to peak area integration. The
relative intensity of each signal is defined as its peak area divided
by the corresponding peak area of ribitol, which is used as internal
standard. All known artifact peaks, such as peaks due to column
bleed and MSTFA artifact peaks, were not considered in the final
data analyses. Integrated peak areas of multiple derivative peaks
belonging to the same compound were summed and considered
as single compound. Each sample was characterized by the same
number of variables and each of these variables was represented
across all observations with the same sequence. Thus, a data matrix
was generated by intensities of the commensal peaks from all sam-
ples to characterize the biochemical pattern of each sample. The
obtained matrix was then employed for correlation analysis and
pattern recognition.

For testing the precision and accuracy, four derivatized samples
from one same case were consecutively injected into the GC system.
The stability of retention time was of great benefit for matching and
extracting the coeluting peaks. In addition, the technical replicates
were performed for three times.

2.5. Data processing and pattern recognition

After GC/MS analysis, each sample was represented by a GC/MS
TIC, and the peak areas of compounds were integrated. The peak
area ratio of each compound to a corresponding internal standard
was calculated as the response. Statistical analysis was performed
using a two sample t-test. The differentially expressed compounds
with P-values of <0.05 were considered statistically significant.
Principal component analysis (PCA) was used to differentiate the
samples and performed in the MATLAB software (version 7.2, Math-
Works, USA) [22]. The classification performance (specificity and
sensitivity) of samples was assessed by the area under the curve
(AUC) of the receiver–operating characteristic (ROC) curves.

3. Results and discussion
3.1. Study population

The clinicopathological characteristics of the oesophageal can-
cer patients are summarized in Table 1. As listed in Table 1, 20
oesophageal cancer patients were enrolled to constitute the study
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Table 1
Clinicopathologic characteristics of oesophageal cancer patients in this study.

Patient no. Sex/age (years) Histology Pathologic gradea Stage Lymph node metastasis

1 F/54 ESCC PD IIa N0
2 M/62 ESCC MD III N1
3 M/63 ESCC MD III N0
4 F/69 ESCC MD IIa N0
5 M/45 ESCC PD III N1
6 M/70 ESCC PD IIa N0
7 F/41 ESCC MD IIa N0
8 M/60 ESCC PD III N1
9 M/56 ESCC MD I N0

10 M/64 ESCC PD III N1
11 M/42 ESCC MD IIa N0
12 F/54 Adenocarcinoma MD IIa N0
13 M/54 ESCC MD IIa N0
14 M/43 ESCC PD IIa N0
15 M/51 ESCC PD III N1
16 M/57 ESCC MD IIa N0
17 M/58 ESCC MD IIa N0
18 F/76 Adenocarcinoma MD IIa N0
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19 M/61 ESCC
20 M/66 ESCC

a PD, poorly differentiated; MD, moderately differentiated.

opulation (15 males and 5 females; age range, 41–76 years; mean
ge, 57.3 years; median age, 57.5 years) and the paired tissue
pecimens were collected for GC/MS study. Disease staging was
etermined according to the American Joint Committee on Can-
er (AJCC) for esophageal tumors. All patients were subjected to
urgical resection of the primary tumor and dissection of lymph
odes. Tumor size, lymph node numbers, differentiation status, and

ymphovascular invasion were also evaluated.

.2. Metabolomic profiling of samples

Representative GC/MS TIC chromatograms of samples from the
ontrol group and study group were displayed in Fig. 1. In the
C/MS TIC chromatograms of tissue samples from the study and
ontrol groups, the majority of the peaks were identified as endoge-
ous metabolites based on NIST mass spectra library, including
mino acids, organic acids, carbohydrates and fatty acids. These
etabolites were known to be involved in multiple biochemical

rocesses, especially in energy and lipid metabolism [23]. There
ere 84 signals obtained. Table 2 shows the 67 signals which could

e auto-identified by the NIST library through comparison their
ragmentation patterns composed of all the fragment ions with a
tandard mass chromatogram. The remaining 17 peaks which could
ot be identified by the NIST library were not listed. The result-

ng data consisted of peak number, retention time, material name,
nd ion intensity. The first three fragment-ion m/z values with
he highest abundance within each fragmentation pattern and the

atching percentage to the NIST library were also listed in Table 2.
ll the amino acids in the “84 metabolite-panel” were further iden-

ified through correlation with retention times and fragmentation
atterns when compared with the corresponding commercially
vailable standards.

Four TIC profiles of consecutively injected samples of the same
liquot were presented (Fig. 2), and the data showed stable reten-
ion time with no drift in all of the peaks. The consistency of sample
njection was important for obtaining stable TICs, reflecting the sta-
ility of GC/MS analysis and reliability of the metabolomic data.
urthermore, the sample preparation was quite consistent for the

amples as evidenced by the triplicates of the same case.

After normalization of data, marker metabolites that were
esponsible for the separation of the tumor group from the con-
rol group were summarized in Table 3. Except for l-altrose,
-galactofuranoside, arabinose, and bisethane which were found
PD III N0
P III N1

to be present at higher levels in the control group, the remaining
marker metabolites were found in a larger amount in the tumor
group. The levels of all metabolites were found to be statistically
different between the two groups (P < 0.05).

3.3. Pattern recognition and function analysis

PCA, an unsupervised projection method used to visualize the
dataset and display the similarity and difference, was performed
[10,14,24,25]. The PCA scores plot showed the two groups were
scattered into two different regions (Fig. 3(a)). A secondary PCA
model was constructed using the marker metabolite intensities as
variables. ROC analysis using the cross-validated predicted Y (pre-
dicted class) values was performed to validate the robustness of the
PCA model in discriminating tumor from the control. The sensitiv-
ity and specificity trade-offs were summarized for each variable
using the area under the ROC denoted as AUC, which of this PCA
model was 1 (Fig. 3(b)). The high AUC value of the respective
ROC analyses confirmed that the PCA model with the combina-
tion of the three principal components gave a good discriminating
value. Of note, the intension for this analysis was not to replace
the established histopathologic evaluation of oesophageal cancer,
rather to identify metabolites that hold the potential to augment
the metabolic biomarkers gleaned from histologic findings, as rou-
tine histopathology provides no molecular characteristics on the
biopsied specimens.

Among the selected markers, we found that some of them were
worthy of further investigation. We would like to discuss their
roles during the process of tumor metabolism associated with
oesophageal cancer.

Valine, an essential amino acid, was implicated in the distinc-
tive metabolomic profile of human esophageal tumors. It is worth
noting that increased valine level was also found in hepatocellular
carcinoma, due to an increased glycolysis [18]. In hepatocellular
carcinoma, a direct inhibitory effect on tumor growth was con-
firmed after the depletion of valine [26,27]. The level of isoleucine,
a branched-chain amino acid, was also found to be higher in
the oesophageal cancer group than the control group. Valine and

isoleucine share the same enzyme systems (branched-chain amino
acid transferase and branched-chain alpha-ketoacid dehydroge-
nase for their initial degradative steps), which are considered as a
group in terms of their roles in amino acid homeostasis [28]. Malig-
nant transformation and tumor progression are often accompanied
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Table 2
Metabolites of the oesophageal cancer and paired tissuea.

Peak no. Retention time Metabolites m/z no. 1 m/z no. 2 m/z no. 3 Match percent (%)

1 5.73 Acetic acid 73 147 66 85
3 6.53 Silanamine 171 73 186 87
4 6.71 Propenoic acid 147 73 217 86
5 7.05 Bisethane 147 73 103 84
7 8.83 Propanoic acid 147 73 117 90
8 9.18 Butanoic acid 73 147 191 72
9 9.30 l-Valine 73 144 218 91

10 9.76 l-Alanine 116 73 147 86
11 10.12 Glycine 174 73 147 80
12 10.32 Butanoic acid 73 131 147 80
14 10.78 Benzyl alcohol 91 165 135 96
15 10.84 Butanamine 73 147 217 87
16 11.03 Butanoic acid 147 73 117 91
17 11.05 Furandicarboxylic acid 285 73 147 91
18 11.29 Isoleucine 73 218 158 87
19 11.40 Phosphate 155 199 211 80
20 11.47 Phosphoric acid 211 133 255 92
23 12.71 Urea 147 189 73 94
24 13.06 Serine 204 73 218 94
25 13.40 l-Leucine 158 73 147 91
26 13.51 Phosphate 299 73 314 96
28 14.71 Pyrimidine 241 99 255 93
29 14.82 Butenedioic acid 245 73 147 86
31 15.91 l-Threonine 73 218 117 91
32 16.67 Aminoquinoline 160 131 116 85
33 19.00 Malic acid 73 147 233 91
34 19.77 l-Methionine 176 73 128 72
35 19.83 l-Proline 156 73 147 78
36 20.03 l-Aspartic acid 232 73 100 80
37 20.12 Naphthalene 84 174 73 90
38 20.41 Hexadecanoic acid 73 299 120 75
39 20.93 Creatinine 73 115 143 93
40 21.03 l-Cysteine 73 220 147 84
43 24.39 l-Asparagine 73 116 231 89
44 25.06 l-Phenylalanine 218 73 192 72
45 25.28 l-Lysine 84 73 156 91
46 25.55 Aminoadipic acid 73 260 147 72
47 26.14 Ribitol 73 217 147 92
48 26.91 Glutamine 156 73 245 78
49 26.98 Glycerophosphoric acid 73 299 357 86
50 27.48 Purine 265 73 280 95
52 28.22 Octanoic acid 73 273 147 91
53 28.30 Tetradecanoic acid 73 117 285 84
54 28.56 Arabinofuranoside 73 217 147 72
55 28.85 Glucofuranose 217 73 127 83
57 29.22 Tyrosine 179 73 208 91
58 29.92 Galactopyranose 204 73 191 93
61 30.91 Gulonic acid 73 205 147 70
62 30.97 l-Ascorbic acid 73 332 147 93
63 31.43 l-Altrose 217 73 147 72
64 31.85 d-Glucose 204 73 217 87
65 32.05 Arabinose 73 217 191 74
67 32.36 Hexadecanoic acid 313 117 73 97
68 33.46 d-Galactofuranoside 217 73 147 73
69 33.74 Myo-inositol 73 305 217 81
70 33.81 Naphthalenepentanoic acid 305 191 320 93
72 35.41 Octadecadienoic acid 75 117 129 85
73 35.51 Oleic acid 117 73 339 76
74 35.67 Naphthalene 314 161 134 70
75 35.98 Octadecanoic acid 341 117 73 98
76 36.11 d-Ribofuranose 73 299 147 72
77 39.60 Myo-inositol 73 318 217 81
80 41.79 Mannoonic acid 73 217 147 75
81 43.56 Gulose 204 73 361 74
82 45.06 Lyxopyranose 217 207 73 82
83 47.28 Benzoic acid 119 193 73 85
84 49.28 Cholesterol 129 329 368 99

a Peaks in the TICs are numbered according to their retention time. The identification of metabolite is based on NIST mass spectra database according to the match of
masses (m/z) between the interested peak’s fragmentation pattern and that from the standard database.
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Fig. 1. Representative GC/MS total ion chromatograms of the samples from the

y structural changes in carbohydrate components of glycoproteins
nd glycolipids. Studies with tumor cell glycosylation mutants and
pecific inhibitors of glycosylation suggest that expression of sialy-
ated and beta (1-6) branched asparagine-linked oligosaccharides
re required for tumor cell invasion and metastasis [29]. Further-
ore, the change in asparagine metabolism is probably related to

ow affinity with l-type amino acid transporter 1 in tumor cell lines
30]. In this study, an increased level of alanine and serine was also

ound in oesophageal cancer samples, suggesting involvement of
lycolysis.

In the current study, the level of tyrosine (Tyr) was higher in
he oesophageal cancer group than that in the control group in our
tudy. Tyr is synthesized from the essential amino acid phenylala-

ig. 2. The overlay chromatograms of four parallel samples for the validation of precisio
IC chromatogram from 11 to 15 min; (C) zoomed in response of one representative peak
roups (oesophageal cancer and normal mucosae) after chemical derivatization.

nine (Phe). The conversion of Phe to Tyr is catalyzed by the enzyme
phenylalanine hydroxylase, a monooxygenase. All free amino acids
are essential metabolic substrates for tumor cells. Solid tumors
exhibit relatively specific amino acid dependency that function-
ally regulates their survival, proliferation, and metastasis. It has
been reported that human A375 and murine B16 melanoma cells
are tyrosine (Tyr)4/phenylalanine (Phe)-dependent [31]. Moreover,
Tyr/Phe restriction also inhibits invasion and metastasis of other

cancers [32,33]. Specific amino acid dependency is one of the
metabolic abnormalities of cancer cells and can also be regarded
as the metabolic basis for their malignant behavior. We speculated
that there was some relationship between the altered level of Tyr
and oesophageal cancer metabolism.

n. (A) The total ion current chromatogram of GC–MS analysis; (B) enlarged part of
with small area.
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Table 3
Marker metabolites found in GC/MS chromatograms of the two groups.

Metabolite Rt (min) Chemical class P-valuea

l-Valine 9.30 Amino acid 0.000000004
Naphthalene 20.12 Others 0.000000045
1-Butanamine 10.84 Others 0.000000053
l-Altrose 31.43 Carbohydrates 0.000000073
d-Galactofuranoside 33.46 Carbohydrates 0.000000196
Pyrimidine 14.71 Pyrimidine nucleoside 0.000000543
Aminoquinoline 16.67 Others 0.000001410
l-Tyrosine 29.22 Amino acid 0.000001681
Isoleucine 11.29 Amino acid 0.000002688
Purine 27.48 Purine nucleoside 0.000013755
Serine 13.06 Amino acid 0.000023238
Phosphoric acid 11.47 Inorganic acid 0.000029045
Myo-inositol 39.6 Others 0.000032629
Arabinose 32.05 Carbohydrates 0.000071416
Arabinofuranoside 28.56 Carbohydrate 0.000309028
l-Asparagine 24.39 Amino acid 0.000647234
Tetradecanoic acid 28.3 Fatty acid 0.001811760
l-Alanine 9.76 Amino acid 0.002016721
Hexadecanoic acid 20.41 Fatty acid 0.007699254
Bisethane 7.05 Others 0.008971290

a Statistical P-value calculated using a two sample t-test (significance at P < 0.05).

Fig. 3. (A) PCA scores plot discriminating esophageal tumor specimens from control
specimens based on GC/MS marker metabolites. (B) ROC curve determined using the
cross-validated predicted Y-values of the GC/MS PCA model.

[

[

[

[
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Hexadecanoic acid and tetradecanoic acid are common fatty
acids in human. In cancer cells, fatty acid synthase is active, lead-
ing to transcriptionally up-regulated fatty acid synthesis [34]. The
same event takes place in hepatoma cells and serum of liver cancer
patients [11,35]. An early study demonstrated that polyunsaturated
fatty acids were increased in BT4C gliomas in rats during therapy-
induced apoptosis [36]. A change in the metabolism of fatty acids
in tumor cells could lead to the pathogenesis of cancer [37]. There-
fore, we added hexadecanoic acid and tetradecanoic acid into our
diagnostic model for oesophageal cancer.

The change in carbohydrates metabolism probably resulted
from promotion of glycolysis and disruption of tricarboxylic acid
cycle (TCA cycle). Perturbations of liver metabolism by liver toxins
caused an increase in glycogenolysis and/or a decrease in glycogen
reduction [38,39], and a decreased level in glucose and glycogen
also was found in hepatoma and colorectal cancer [18,40]. Based
on the findings of our current study, we speculate that abnormal
metabolism of carbohydrates may be associated with tumor growth
with its large energy requirement from aggressive cell proliferation.
As substrates and nitrogen sources, the alteration in primidine and
purine as shown in our study was probably associated with the
higher propagation rate of the tumor cells.

4. Conclusions

Our work is an integrated analysis based on metabolomic
profiling of biopsied tissues by chemical derivatization and
gas chromatography/mass spectrometry in oesophageal cancer
patients. Gas chromatography/mass spectrometry was proved to
be a feasible and complementary analytical platform for tissue
metabolic typing in terms of its high sensitivity and reproducibil-
ity. The multivariate analysis of metabolomic data including the
20-marker metabolites established an optimized diagnostic model
to discriminate tumor from normal mucosae with AUC of 1, sug-
gesting that metabolomics may be useful for clinical diagnosis and
in delineating carcinogenesis pathways in oesophageal cancer.
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